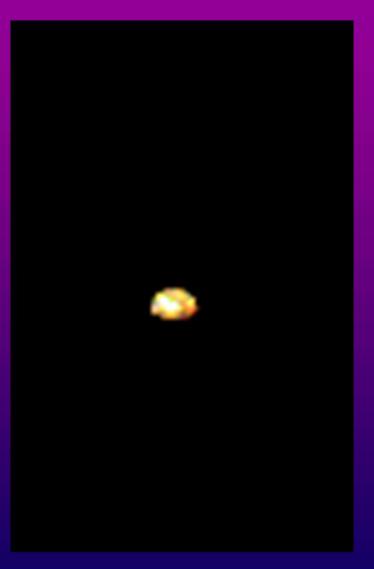

Meth Chemistry and the NIOSH Guide

METH CHEMICAL	NIOSH PAGE
Acetone	3
Ammonia	15
Coleman Fuel	246
Ethyl Alcohol	132
Ethyl Ether	140

Steps in the Production of

Meth

<u>Nazi</u>	Extraction	Cook	No pH Balance	Add Solvent	Salt-Out HCl bulbed thru meth oil
	Dissolve in Heat (methanol), Hydrocarbon, Or Solvents. Then Filter	Ephedrine + Lithium + Liquified ammonia = Meth Oil	Already a Base	Add solvent (coleman fuel or freon)	Salt + sulfuric Acid(liquid fire) = HCI gas[gas gen]
HI/Red P	Extraction	Cook	pН	Add	Salt-Out
			Balance	Solvent	HCl bulbed thru meth oil


Objectives

- Identify basic properties of atoms / elements
- Associate general hazards with chemical families
- Classify compounds as organic or inorganic
- Identify and associate material in the NIOSH guide with chemicals found at meth labs
- Associate specific hazards with chemicals found at Meth labs

Introduction

- All compounds have chemical and physical properties which will determine their behavior in their environment
- All forms of matter, solids, liquids and gasses, are found at meth labs
- Understanding the chemical hazard and the physical property of the chemical enables you to protect yourself from it
- Chemistry is the study of the behavior of matter

States of Matter

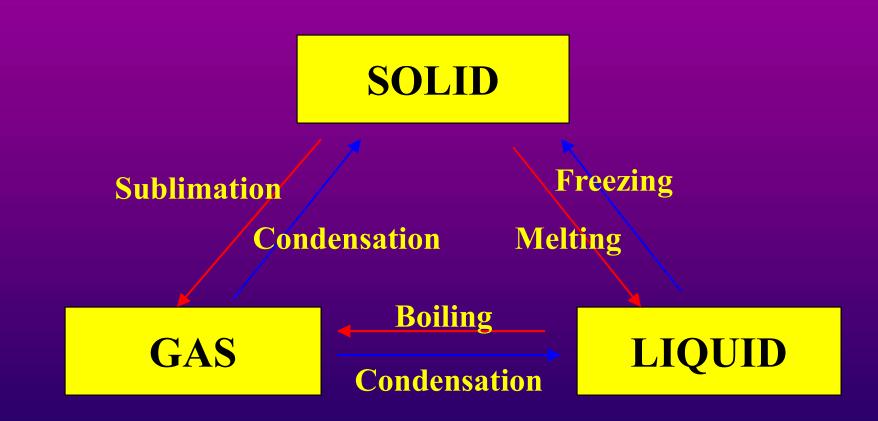
• Solids

- Non-volitile
- Fixed volume and shape
- Noncompressible

• Examples

- Red Phosphorous
- Salt
- Iodine

• Liquids


- Fixed volume, but not a fixed shape
- Volatile
- Examples
 - Ether
 - Sulfuric Acid
 - Gasoline
 - Mercury

Gases

- No fixed volume or shape
- Compressible
- Examples
 - Ammonia
 - Phospine
 - Hydrogen Chloride
 - Methylamine

Effect of Temperature

*Red arrow indicates an increase in temperature *Blue arrow indicates a decrease in temperature

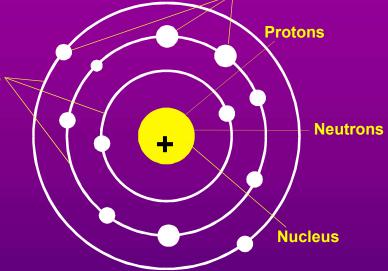
Meth Chemical Building Blocks

Atoms Elements Molecules Compounds Mixtures

Parts of an Atom

Atom – Smallest individual _{Shells} components of elements

Atoms strive to be neutral


Nucleus - center of the atom

Protons - positively charged particles in the nucleus

Neutrons - neutrally charged particles in the nucleus

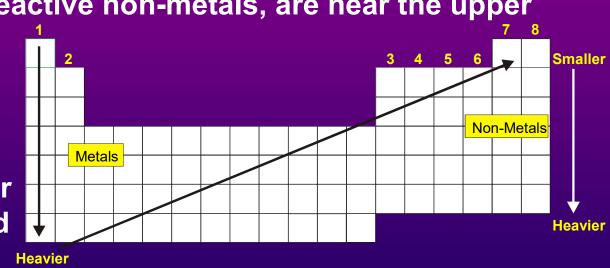
Outer Shell

Electrons - negatively charged particles orbiting the nucleus

Electrons

Elements

- 118 Basic Elements
- Smallest indivisible constituent of a mixture
- Cannot be further separated**
- Arranged on the Periodic Chart

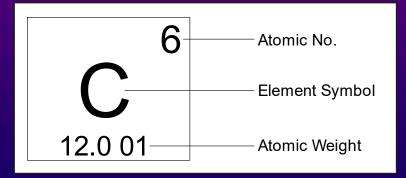

The Periodic Table																	
hl H 1.008	non-metals								H H 1 .00 7	4.0026							
3 Li 6.941	4 Be 9.012									9 F 18.9984	Ne 20.1797						
11	12	2						17	18								
Na	Mg							CI	Ar								
22.9897	24.3050							35.4527	39.948								
19	20	²¹	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	CO	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.9559	47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.39	69.723	72.61	74.921	78.96	79.904	83.80
37	38	39	40	41	42	⁴³	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.4678	87.62	88.9058	91.224	92.906	95.94	(98)	101.07	102.905	106.42	107.868	112.411	114.818	118.710	121.760	127.60	126.904	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CS	Ba	La	Hf	Ta	W	Re	OS	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.905	137.327	138.90	178.49	180.947	183.84	186.207	190.23	192.217	195.078	196.966	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87 Fr (223)	⁸⁸ Ra (226)	89 AC (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 HS (265)	109 Mt (266)									

58 59 60	61	62	63	64	65	66	67	68	69	70	71
Ce Pr Nd 140.116 140.90765 144.2		Sm 150.36	Eu ^{151.964}	Gd 157.25	Tb 158.92534	Dy 162.50	HO	Er 167.26	Tm 168.93421	Yb 173.04	Lu 174.967
90 91 92	93	94	95	96	97	98	99	100	101	102	103
Th Pa U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0381 231.03588 238.02	89 (237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

The Periodic Table

The size and weight of the atoms can be determined by their relative position on the table.

- The largest elements, and most reactive metals, are toward the bottom left
- Smallest, and most reactive non-metals, are near the upper right
- Similarly, lighter elements are found toward the top of the table and heavier elements are located near the bottom



Element Properties

Atomic number - the number of protons in the nucleus

Atomic weight - is the total mass of the atom it is the sum of the protons and neutrons in the nucleus

Elements are chemically stable when there are 8 electrons in the outer shell

Molecules and Compounds

- Smallest indivisible components of a compound
- Molecules consist of multiple atoms
- Molecules may include atoms of one or more elements

- Smallest easily divisible component of a mixture
- Displays consistent properties (flammable, toxic, reactive etc...)

Basic Classes of Compounds

Organics

- Contains Carbon and Hydrogen
- Natural or Synthetic
- Flammable and toxic
- Solid, liquid or gas
- Don't conduct electricity

Inorganics

- Don't contain Carbon
- Natural or synthetic
- Usually doesn't burn
- Often toxic
- Usually water soluble
- Often conduct electricity

Mixtures and Formulas

- Solution that is easily separated
- Monogeneous Vs. Heterogeneous
- Properties vary depending on ratios of constituents
- Examples
 - Gasoline
 - Coleman Fuel

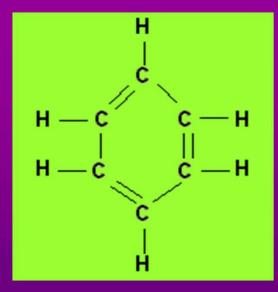
- Chemical formulas describe the ratio of atoms in a molecule
- Subscripts denote relative abundance
- Examples
 - CH₃OH (Methyl Alcohol)
 - HCI (Hydrogen Chloride)

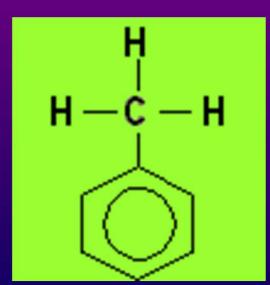
Inorganics

Chemical compounds that do NOT contain carbon and hydrogen in their structure.

Organics

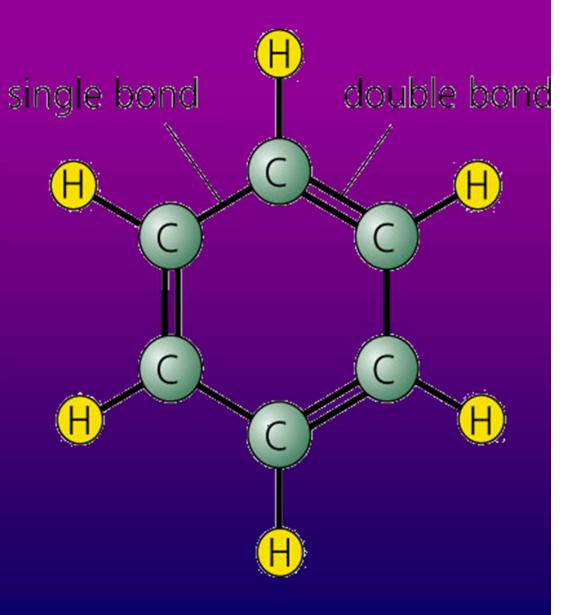
Chemical compounds that DO contain carbon and hydrogen in their atomic structure.



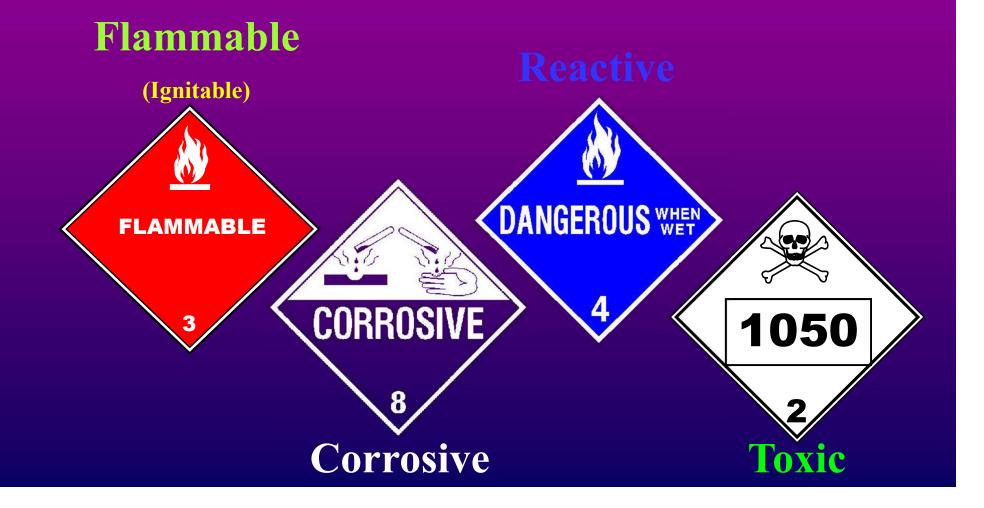


Aromatic Hydrocarbons

Distinct group of hydrocarbons with very different structures than other hydocarbon groups.



Aromatic Hydrocarbons


Benzene Ring: Backbone of aromatic hydrocarbons - very stable. **Examples:** Benzene Toluene Xylene

Resource Conservation and Recovery Act (RCRA)

Categories of Hazardous Materials/Wastes

Flammable

- Liquid with a flash point of 140°F (60°C)
- Not a liquid and capable under normal conditions of causing fire through friction, adsorption of moisture or spontaneous chemical changes, and when ignited, burn vigorously and persistently; or
- Ignitable compressed gases and <u>oxidizers</u>, as identified by DOT (49 CFR 173)

Flammable

Organics

- Coleman Fuel
- Propane
- Methyl Alcohol
- Ethyl Alcohol
- Isopropyl Alcohol
- Ether
- Acetone

Inorganics

- Phosphine
- Ammonia
- Hydrogen

Corrosives

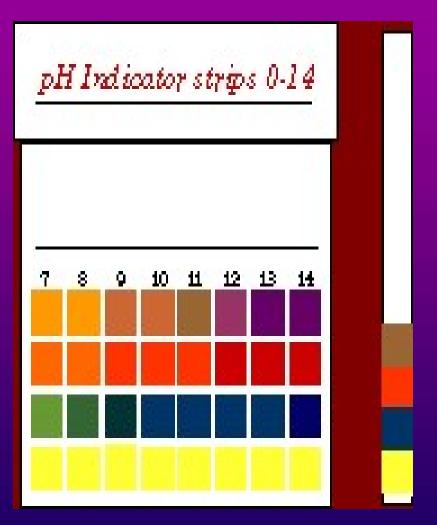
ACIDS Hydriodic Acid (HI) **Hydrochloric Acid** (HCI) Hydrogen Chloride Gas (HCl) Sulfuric Acid (H₂SO₄) Nitric Acid (HNO₃) **Acetic Acid** (CH₃COOH)

BASES

- Sodium Chloride (NaCl)
- Ammonium Hydroxide (NH₄OH)
- Anhydrous Ammonia (NH₃)
- Calcium Hydroxide (Ca(OH)₂

Corrosive Reactions

- Acids typically corrode metals producing flammable hydrogen gas
- Acids and bases destroy human tissue
- Acids react with bases to produce heat and gases



pH of Common Items

	14.0	Sodium Hydroxide
CAUSTIC	12.5	RCRA haz. waste
BASIC	12.0	Household ammonia
ALKALINE	10.0	Detergents and Baking Soda
	8.0	Seawater
	7.4	Blood
<u>NEUTRAL</u>	7.0	Pure water
	6.0	Rain
	4.0	Beer
	3.0	Orange juice, vinegar, wine, acid rain
ACIDIC	2.0	RCRA haz. waste/lemon juice, stomach acid
	1.0	Strong acids, HCl
	0.0	Very acidic

WHAT IS pH?

- Measure of acid or base concentration
- An acid with a pH of 1 is 10 times more concentrated than an acid with a pH of 2
- A base with a pH of 14 is 10 times more concentrated than a base with a pH of 13

Relation of pH with dilution

 Dilution of 1 gallon of a solution of pH=3 to pH=7 would require 10 000 gallons of water

pH 3 to pH 4: 10 gallons
pH 4 to pH 5: 100 gallons
pH 5 to pH 6: 1000 gallons
pH 6 to pH 7: 10 000 gallons

NOT A PRACTICAL SOLUTION

CORROSIVE CONCENTRATION TERMINOLOGY

A. ANHYDROUS, GLACIAL, FUMING (NO WATER)

B. CONCENTRATION \rightarrow 35%-98% (WATER SOLUTION)

C. DILUTE \rightarrow 10% OR LESS

If spill or release is outside, the acid or base becomes more concentrated as the water evaporates.

HAZWOPER for Clandestine Meth Lab Law Enforcement

Please complete day one evaluation

REACTIVES

- Normally unstable-reacts violently
- Mixes with water to form toxic or flammable gases
- Capable of detonation at STP or if heated in confinement
- Contains cyanide or sulfide and generates toxic gases, vapors, or corrosive fumes

Lithium (Li) • Sodium (Na) **Potassium (K)** Calcium (Ca) Magnesium (Mg) Phosphorus (P) (Red, Yellow, White

Oxidizers/ Oxidizing Potential

- Will spontaneously evolve oxygen
- Ammonium Nitrate

Reactives

- Reducers (solvents)
- React with oxidizers (often violently)
- **Unstable materials**
 - Peroxides (decompose oxygen)

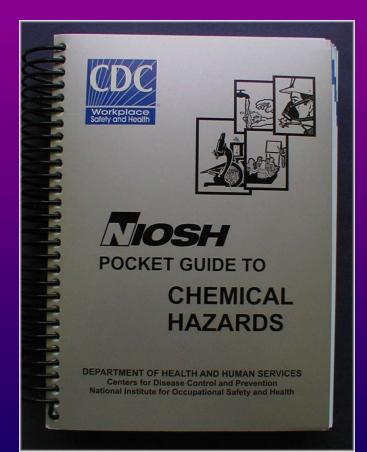
Monomers (polymerize

 Ethers (form peroxides when decomposing)

Toxic

- Iodine (I)
- Ephedrine (HCl or Sulfate salts)
- Psuedo-ephedrine
- Phosgene (COCl₂)
- Phosphine (PH₃)

Poisonous: chemicals that are highly toxic to humans and animals



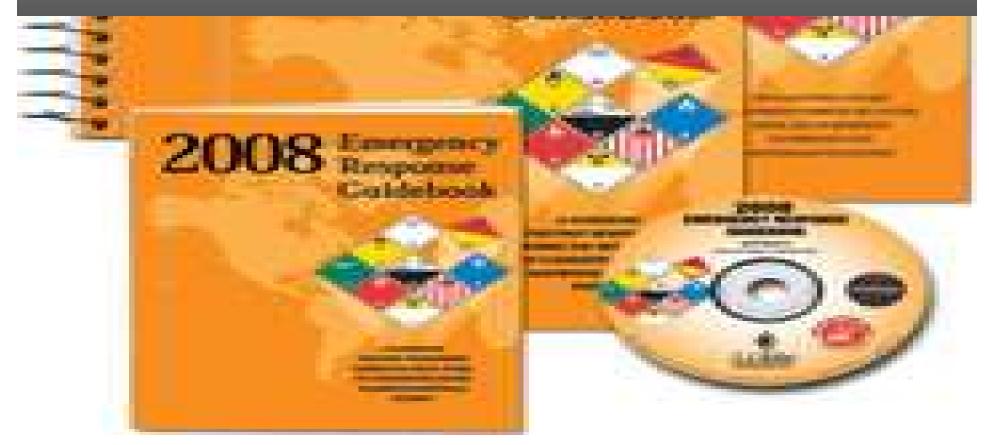
NIOSH Guide Introduction

- How To (Front)
- Tables 1 6 (Front)
- Appendices A G
 (Back)
- Indices CAS, DOT, Synonym and Trade Names (Back)

September 2005 Edition

Ammonia (Formula: NH ₃	(2) CAS#: 7664-41-7		RTECS : BO0875000		DLH: 300 ppm	(5)
Conversion: 1 ppm = 0.70 mg/m^3 (6)		hydrous); 2672 154 (10- solution); 1005 125 (.50		on);	Į		(7)
Synonyms/Trade Names: Anhydrous ammonia [Note: Often used in an aqueous solution.]	, Aqua ammonia, Aqueou	is ammonia					(8)
Exposure Limits:NIOSH REL: TWA 25 ppm(18 mg/m³)ST 35 ppm (27mg/m³)Physical Description: Colorless gas with a pung			(9)	Measuremen (see Table 1) NIOSH 3800 OSHA ID 18	: , 6015,6		(10)
[Note: Shipped as a liquefied compressed gas. E Chemical & Physical Properties: (12) MW: 17.0 BP: -28° F Sol: 34% FL.P: NA (Gas) IP: 10.18ev RGasD: 0.60 VP: UEL: 28% LEL: 15% [Note: Although NH₃ does not meet the DOT definition of a Flammable Gas (for labeling purposes), it should be treated as one.]		unitation(13)tactacttam (solution)contam0%)	(see Table NIOSH 250 ppm: 300 ppm: §: ScbaF:	r Recommend s 3 & 4): CcrS*/Sa* Sa:Cf*/PaprS* GmFW/ScbaF Pd,Pp/SaF:Pd,F GmFS/ScbaE	^c /CcrFS/ /SaF		(14)
Incompatibilities and Reactivities: Strong oxid [Note: Corrosive to copper & galvanized surface		ts of silver & zinc					(15)
Exposure Routes, Symptoms, Target Organs (ER: Inh, Ing (solution), Con (solution/liquid) SY: Irrit eyes, nose, Throat; dysp, wheez, chest p Edema; pink frothy sputum; skin burns, vesic; lic TO: Eyes, skin, resp sys	see Table 5): (16) pain; pulm	First Aid (see Table 6) Eye: Irr immed (solution Skin: Water flush imm Breath: Resp support Swallow: Medical atter	on/liquid) ed (solution	•			(17)

Ammonia	Formula:	CAS#:		RTECS:	IDLH:
	NH ₃	7664-41-7	250/ 1	BO0875000	300 ppm
Conversion: 1 ppm = 0.70 mg/m^3		hydrous); 2672 154 (10			
Sum anuma/Trada Namasu Anhudraus anumaria		solution); 1005 125 (.5	0% solution	1	
Synonyms/Trade Names: Anhydrous ammonia. [Note: Often used in an aqueous solution.]	, Aqua ammonia, Aqueou	s ammonia			
Exposure Limits:				Measurement	Mathada
NIOSH REL: TWA 25 ppm(18 mg/m ³)	OSHA PEL†: TWA	50 nnm (35 mg/m ³)		(see Table 1):	victious
ST 35 ppm (27mg/m^3)		50 ppin (55 mg/m)		NIOSH 3800, 6	015 6016
Physical Description: Colorless gas with a pung	ent suffocating odor			OSHA ID 188	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
[Note: Shipped as a liquefied compressed gas. Ea		sure.]			
Chemical & Physical Properties:	Personal Protection/Sa	-	Respirat	or Recommendati	ons
MW : 17.0	(see Table 2):			les 3 & 4):	
BP: -28 [°] F	Skin: Prevent skin cont	act	NIOSH	,	
Sol: 34%	Eyes: Prevent eye conta		11	: CcrS*/Sa*	
FL.P: NA (Gas)	Wash skin: When Cont		300 ppm	: Sa:Cf*/PaprS*/C	
IP: 10.18ev	Remove: When wet or	contam		GmFW/ScbaF/S	
RGasD: 0.60	(solution)			F:Pd,Pp/SaF:Pd,Pp:	AScba
VP:	Change: N.R.	0.4	Escape:	GmFS/ScbaE	
UEL:	Provide: Eyewash (>10	/			
LEL:	Quick drench	(>10%)	_		
[Note: Although NH ₃ does not meet the DOT					
definition of a Flammable Gas (for labeling					
purposes), it should be treated as one.]					
Incompatibilities and Reactivities: Strong oxid		ts of silver & zinc			
[Note: Corrosive to copper & galvanized surface			<u>`</u>		
Exposure Routes, Symptoms, Target Organs (s	see 1 able 5):	First Aid (see Table 6	/		
ER: Inh, Ing (solution), Con (solution/liquid) SY: Irrit eyes, nose, Throat; dysp, wheez, chest p	oin: nulm	Eye: Irr immed (soluti Skin: Water flush imm		n/liquid)	
Edema; pink frothy sputum; skin burns, vesic; liq		Breath: Resp support		ni nquiu)	
TO: Eyes, skin, resp sys		Swallow: Medical atte		ed (solution)	
10. 2900, okiii, rosp 898		Strunotte Tricultur atte		su (solution)	


Boxes 1,2,3,4,6, & 7

- Chemical Name
- Structure / formula
- CAS Number
- RTECS Number
- DOT ID Number and ERG Guide Number
- See Ammonia
 - Note different DOT #'s, depending on concentration

- Chemical, Synonyms and Trade Name Index
 - If you can't find a chemical name under column 1, look in the synonym and trade name index
- Conversion factors
 - convert ppm to mg/m3, for air monitoring
- See Methyl Ethyl Ketone

EMERGENCY RESPONSE GUIDEBOOK

How To Use This Guidebook (White page 1)

- Identify the material
- Look up the 3-digit Guide Number
 - ID Number Index (Yellow pages)
 - Name Index (Blue pages)
 - Explosives List (p. 1)
 - Table of Placards (p. 16-17)
 - If no info available, use Guide # 111
- "P" suffix may violently polymerize
- Highlighted Look in Green pages

ID Number Index (Yellow pages)

ID No.		de Name of Material	ID No.	Gulo No.	
2599	126	Chlorotrifluoromethane and Trifluoromethane azeotropic mixture with approximately 60% Chlorotrifluoromethane	2602	126	Refrigerant gas R-12 and Refrigerant gas R-152a azeotropic mixture with 74% Refrigerant gas R-12
259 <mark>9</mark>	126	Refrigerant gas R-13 and Refrigerant gas R-23 azeotropic mixture with 60% Refrigerant gas R-13	2602	126	Refrigerant gas R-152a and Refrigerant gas R-12 azeotropic mixture with 74% Refrigerant gas R-12
2599	126	Refrigerant gas R-23 and Refrigerant gas R-13 azeotropic mixture with 60% Refrigerant gas R-13	2602	126	Refrigerant gas R-500 (azeotropic mixture of Refrigerant gas R-12 and Refrigerant gas R-152a with
2599	126	Refrigerant gas R-503 (azeotropic mixture of			approximately 74% Refrigerant gas R-12)
		Refrigerant gas R-13 and	2603	131	Cycloheptatriene
		Refrigerant gas R-23 with approximately 60%	2604	132	Boron trifluoride diethyl etherate
		Refrigerant gas R-13)	2605	155	Methoxymethyl isocyanate
2599	126	Trifluoromethane and	2606	155	Methyl orthosilicate
		Chlorotrifluoromethane	2607	129F	Acrolein dimer, stabilized
		azeotropic mixture with approximately 60%	2608	129	Nitropropanes
		Chlorotrifluoromethane	2609	156	Triallyl borate
2600	119	Carbon monoxide and Hydrogen	2610	132	Triallylamine
		mixture	2611	131	Propylene chlorohydrin
2600	119	Carbon monoxide and Hydrogen	2612	127	Methyl propyl ether
0000	440	mixture, compressed	2614	129	Methallyl alcohol
2600	119	Hydrogen and Carbon monoxide mixture	2615	127	Ethyl propyl ether
2600	119	Hydrogen and Carbon monoxide	2616	129	Triisopropyl borate
		mixture, compressed	2617	129	Methylcyclohexanols
2601	115	Cyclobutane	2618	130F	Vinyltoluenes, inhibited
2602	126	Dichlorodifluoromethane and	2619	132	Benzyldimethylamine

Numbered Guide (Orange pages)

Flammable Liquids NAERG% 30 (Non-Polar/Water-Immiscible/Noxious)	NAERG96 FLAMMABLE LIQUIDS GUID (Non-Polar/Water-Immiscible/Noxious) 130
POTENTIAL HAZARDS	EMERGENCY RESPONSE
 FIRE OR EXPLOSION HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Some may polymerize (P) explosively when heated or involved in a fire. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water. HEALTH May cause toxic effects if inhaled or absorbed through skin. Inhalation or contact with material may irritate or burn skin and eyes. 	 FIRE CAUTION: All these products have a very low flash point: Use of water spray when fighting fire may be inefficient. Small Fires Dry chemical, CO₂, water spray or regular foam. Large Fires Water spray, fog or regular foam. Do not use straight streams. Move containers from fire area if you can do it without risk. Fire involving Tanks or Car/Trailer Loads Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
Fire will produce irritating, corrosive and/or toxic gases. Vapors may cause dizziness or suffocation. Runoff from fire control or dilution water may cause pollution.	 ALWAYS stay away from the ends of tanks. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn.
PUBLIC SAFETY • CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number listed on the inside back cover. • Isolate spill or leak area immediately for at least 50 to 100 meters (160 to 330 feet) in all directions. • Keep unauthorized personnel away. • Stay upwind. • Keep out of low areas. • Ventilate closed spaces before entering.	 SPILL OR LEAK ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). All equipment used when handling the product must be grounded. Do not touch or walk through spilled material. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. A vapor suppressing foam may be used to reduce vapors. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. Use clean non-sparking tools to collect absorbed material.
• Wear positive pressure self-contained breathing apparatus (SCBA). • Structural firefighters' protective clothing will only provide limited protection.	Large Spills • Dike far ahead of liquid spill for later disposal. • Water spray may reduce vapor; but may not prevent ignition in closed spaces. FIRST AID
 EVACUATION Large Spill Consider initial downwind evacuation for at least 300 meters (1000 feet). Fire If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. 	 Move victim to fresh air. Call emergency medical care. Apply artificial respiration if victim is not breathing. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. Wash skin with soap and water. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.

Name Index (Blue pages)

Name of Material	Guide No.	ID No.	Name of Material	Guide No.	ID No.
p-Nitrosodiethylaniline	135		tert-Octyl mercaptan	131	3023
p-Nitrosodimethylaniline	135	1369	Octyltrichlorosilane	156	1801
Nitrostarch, wet, with not less than 30% alcohol or solvent	113	1337	Oil, n.o.s., flash point not less than 93°C (200°F)	171	9277
Nitrostarch, wetted with not less	s 113	1337	Oil, petroleum, n.o.s.	128	1270
than 20% water			Oil gas	119	1071
Nitrostarch, wetted with not less than 30% solvent	s 113	1337	Oil gas, compressed	119	1071
Nitrosyl chloride	125	1069	Oleum	137	1831
Nitrosylsulfuric acid	157	2308	Oleum, with less than 30% free Sulfur trioxide	137	1831
Nitrosylsulphuric acid	157	2308	Oleum, w. th Jess . Tap 30% free	377	1831
Nitrotoluenes	152	1664	Sulphur, joxide		
Nitrotoluenes, liquid	152	1664	Oleum, with not less man 30%	137	1831
Nitrotoluenes, solid	152	1664	free Sulfur trioxide		
Nitrotoluidines (mono)	153	2660	Oleum, with not less than 30% free Sulphur trioxide	137	1831
Nitrous oxide	122	1070	Organic peroxide, liquid, n.o.s	. 146	9183

Numbered Guide (Orange pages)

GUIDE SUBSTANCES - WATER-REACTIVE - CORROSIVE

NAERG96 NAERG96

SUBSTANCES - WATER-REACTIVE - CORROSIVE

GUIDE 137

POTENTIAL HAZARDS

HEALTH

- TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns, or death.
- · Fire will produce irritating, corrosive and/or toxic gases.
- Reaction with water may generate much heat which will increase the concentration of fumes in the air.
- · Contact with molten substance may cause severe burns to skin and eyes.
- · Runoff from fire control or dilution water may cause pollution.

FIRE OR EXPLOSION

- Some of these materials may burn, but none ignite readily.
- · May ignite combustibles (wood, paper, oil, clothing, etc.).
- · Substance will react with water (some violently), releasing corrosive and/or toxic gases.
- Flammable/toxic gases may accumulate in confined areas (basement, tanks, hopper/tank cars etc.).
- · Contact with metals may evolve flammable hydrogen gas.
- · Containers may explode when heated or if contaminated with water.
- Substance may be transported in a molten form.

PUBLIC SAFETY

- CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping
 Paper not available or no answer, refer to appropriate telephone number listed on the
 inside back cover.
- Isolate spill or leak area immediately for at least 50 to 100 meters (160 to 330 feet) in all directions.
- Keep unauthorized personnel away.
- Stay upwind.
- · Keep out of low areas.
- · Ventilate enclosed areas.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- · Wear chemical protective clothing which is specifically recommended by the manufacturer.
- Structural firefighters' protective clothing is recommended for fire situations ONLY; it is not
 effective in spill situations.

EVACUATION

Spill

See the Table of Initial Isolation and Protective Action Distances for highlighted substances.
 For non-highlighted substances, increase, in the downwind direction, as necessary, the isolation distance shown under "PUBLIC SAFETY".

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all
directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

EMERGENCY RESPONSE

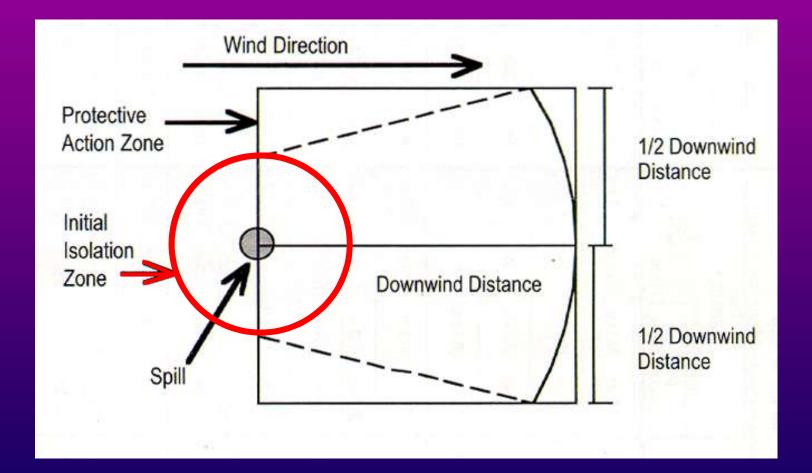
- · When material is not involved in fire: do not use water on material itself.
- Small Fires

FIRE

- · Dry chemical or CO.
- · Move containers from fire area if you can do it without risk.
- Large Fires
- Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only.

Fire involving Tanks or Car/Trailer Loads

- · Cool containers with flooding quantities of water until well after fire is out.
- · Do not get water inside containers.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- ALWAYS stay away from the ends of tanks.


SPILL OR LEAK

- · Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- Use water spray to reduce vapors; do not put water directly on leak, spill area or inside container.
- · Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- Small Spills Cover with DRY earth, DRY sand, or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.
- Use clean non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.
- · Prevent entry into waterways, sewers, basements or confined areas.

FIRST AID

- Move victim to fresh air.
 Call emergency medical care.
- Apply artificial respiration if victim is not breathing.
- Do not use mouth-to-mouth method if victim ingested or inhaled the substance; induce artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.
- Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · For minor skin contact, avoid spreading material on unaffected skin.
- · Removal of solidified molten material from skin requires medical assistance.
- Keep victim warm and quiet.
- · Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.
- Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.

Initial Isolation vs. Protective Action (Green pages 316-317)

Isolation & Protection Distances (Green pages)

		(From	a small pac	SMALL S kage or small		a large pack	age)			LARGE package or fr	rom many sr	nall package	s)
ID No.	NAME OF MATERIAL	Fir ISOL in all Dir Meters	ATE	pers DA Kilometer	Y		HT	Fir ISOL in all Dir Meters		pe DA Kilometer	PRO rsons Dow	nen TECT mwind durin NIG Kilometer	iHT
1834	Sulphuryl chloride (when spilled in water)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	125 m	(400 ft)	1.1 km	(0.7 mi)	2.4 km	(1.5 mi)
1836	Thionyl chloride (when spilled on land)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	60 m	(200 ft)	0.5 km	(0.3 mi)	1.1 km	(0.7 mi)
1836	Thionyl chloride (when spilled in water)	30 m	(100 ft)	0.2 km	(0.1 mi)	1.0 km	(0.6 mi)	335 m	(1100 ft)	3.2 km	(2.0 mi)	7.1 km	(4.4 mi)
1838	Titaniumtetrachloride (when spilled on land)	30 m	(100 ft)					30 m	(100 ft)	0.3 km	(0.2 mi)	0.8 km	(0.5 mi)
1838	Titanium tetrachloride (when spilled in water)	30 m	(100 ft)			s Th		125 m	(400 ft)	1.1 km	(0.7 mi)	2.9 km	(1.8 mi)
1859 1859	Silicon tetrafluoride Silicon tetrafluoride, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.5 km	(0.3 mi)	60 m	(200 ft)	0.5 km	(0.3 mi)	1.6 km	(1.0 mi)
1892	ED (when used as a weapon)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.8 km	(0.5 mi)	125 m	(400 ft)	1.3 km	(0.8 mi)	2.6 km	(1.6 mi)
1892	Ethyldichloroarsine	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	60 m	(200 ft)	0.5 km	(0.3 mi)	1.0 km	(0.6 mi)
1898	Acetyliodide (when spilled in water)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	60 m	(200 ft)	0.6 km	(0.4 mi)	1.6 km	(1.0 mi)
1911 1911	Diborane Diborane, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	95 m	(300 ft)	1.0 km	(0.6 mi)	2.7 km	(1.7 mi)
1923 1923 1923	Calcium dithionite (when spilled in water) Calcium hydrosulfite (when spilled in water) Calcium hydrosulphite (when spilled in water)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	1.1 km	(0.7 mi)

Water-Reactive Materials (Green pages 360-363)

TABLE OF WATER-REACTIVE MATERIALS WHICH PRODUCE TOXIC GASES

Materials W	/hich	Produce	Large	Amounts	of	Toxic-by-Inhalation (TIH) Gas(es)	
			Whe	n Spilled	in	Water	

ID No.	Guide No.	Name of Material	8	1	TIH Gas Prod	
1834	137	Sulfuryl chloride		HCI	SO3	100
1834	137	Sulphuryl chloride		HCI	SO,	3.57 5 1
1836	137	Thionyl chloride		HCI	SO2	35
1838	137	Titanium tetrachloride		HCI		
1898	156	Acetyl iodide		HI		
1923	135	Calcium dithionite		H_2S	SO2	
1923	135	Calcium hydrosulfite		H_2S	SO2	
1923	135	Calcium hydrosulphite		H_2S	SO ₂	
1939	137	Phosphorus oxybromide		HBr		
1939	137	Phosphorus oxybromide, solid		HBr		
2004	135	Magnesium diamide		NH_3		
2011	139	Magnesium phosphide		PH_3		
2012	139	Potassium phosphide		PH_3		
2013	139	Strontium phosphide		PH_3		
2442	156	Trichloroacetyl chloride		HCI		

Boxes 1,2,3,4,6, & 7

- Chemical Name
- Structure / formula
- CAS Number
- RTECS Number
- DOT ID Number and ERG Guide Number
- See Ammonia
 - Note different DOT #'s, depending on concentration

- Chemical, Synonyms and Trade Names Index
 - If you can't find a chemical name under column 1, look in the synonym and trade name index
- Conversion factors
 - convert ppm to mg/m3, for air monitoring
- See Methyl Ethyl Ketone

Box 9: Exposure Limits

- Lists NIOSH limits first, then OSHA limits
- NIOSH REL: <u>TWA</u> for up to a 10-hr workday during a 40-hr workweek
- Notations for additional exposure limits:
 - ST (Short Term Exposure Limit): 15-min TWA that should not be exceeded during a workday (Toluene)
 - C (Ceiling): Not to be exceeded at any time (HCI)
 - Ca: Potential occupational carcinogen (Benzene)
 - [skin]: Potential for skin absorption, prevent skin exposure (Methyl Alcohol)

Exposure Limits (continued)

- OSHA PEL: TWA concentrations that must not be exceeded during any 8-hr workshift of a 40-hr workweek
- Notations for additional exposure limits:
 - ST, Ca, [skin]: same as NIOSH
 - C: same as NIOSH, plus:
 - [15-min] Ceiling as a 15-min TWA
 - [5-min max peak] 5-min TWA above the normal ceiling that may be reached over a specified period
- See Gasoline for Ca

Box 5: IDLH

Immediately Dangerous to Life and Health

- Concentration at which a worker whose respiratory protection failed should be able to escape without permanent health effects, based on a 30-minute exposure
- Must have SCBA to enter IDLH atmosphere
- Ca carcinogen, followed by IDLH in brackets
- [10% LEL] IDLH was based on the flammability hazard, rather than toxicological data (Ethyl Ether, Acetone)
- N.D. Not determined

METH LAB CHEMICAL HAZARD ASSESSMENT EXERCISE

Box 12: Chemical and Physical Description

- Describes the appearance, odor and physical state of the chemical at normal conditions (STP = 68 degrees F)
- [] shipped as a liquefied compressed gas or used as a pesticide (Hydrogen Chloride)
- What if you respond to an incident and the temperature of the compound is greater or less than 68 degrees F? (Ether, Sulfuric Acid)

Physical and Chemical Properties

MW-Molecular Weight
BP-Boiling Point
Sol-Solubility in Water
Fl.P.-Flash Point
I.P.-Ionization Potential
Sp.Gr.-Specific Gravity

VP-Vapor Pressure
MLT-Melting Point (solids)
FRZ-Freezing Point (liq/gas)
UEL-Upper Explosive Limit
LEL-Lower Explosive Limit
RGasD-Relative Density of gases (relative to air)

Chemical and Physical Properties

- MW Molecular Weight
 - MW of Air is 29
- IP Ionization Potential
 - Lowest energy level at which a molecule of the substance may be ionized
 - We'll discuss the IP when we cover the PID air monitoring instrument

Chemical and Physical Properties

• Sol – Solubility*

- The percentage of a material (by weight) that will dissolve in water at STP (68 ^oF, 1 atm)
- Solubility provided for solids, liquids and gases
- Miscible means the material is "mixable" or will completely go into solution
- Sp. Gr Specific Gravity

Sp.Gr.

• Weight of a chemical in comparison to an equal volume of water

Weight of a gallon of substance Weight of a gallon of water

Solubility Terms

Degree of Solubility in Distilled Water at 50° F	Percentage
Negligible	< 0.1
Slight	0.1-1
Moderate	1-10
Appreciable	> 10
Complete/Miscible	In all proportions

Look up Ammonia

Chemical and Physical Properties

- Sol Solubility*
 - The percentage of a material (by weight) that will dissolve in water at STP (68 ^oF, 1 atm)
 - Solubility provided for solids, liquids and gases
 - Miscible means the material is "mixable" or will completely go into solution

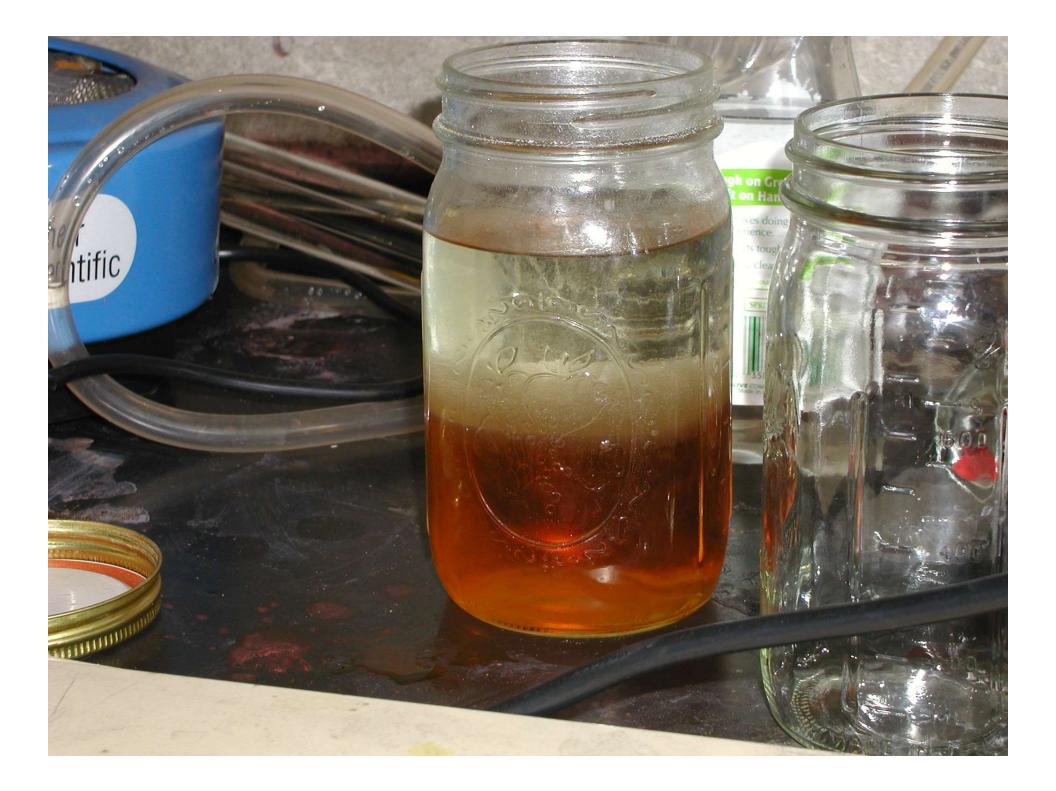
Sp. Gr - Specific Gravity*

Sp.Gr.

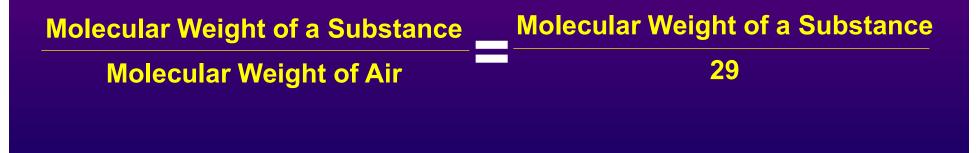
 Weight of a chemical in comparison to an equal volume of water

Weight of a gallon of substance Weight of a gallon of water

Specific Gravity of liquids:


- < 1 Insoluble materials will float in (or on) water
- > 1 Insoluble materials will sink in water

Soluble/Miscible materials will mix with water



Chemical and Physical Properties

• **RGasD - Relative Gas Density / Vapor Density**

- The weight of a vapor or gas compared to the weight of an equal volume of air (Air is equal to "1")
- Provided for gases only
- Where will Ammonia, Hydrogen Chloride and Phosphine be?

RGasD =

8 Lighter Than Air Gases

Hydrogen
Ammonia
Helium
Acotylene
Methane
Illuminating of

Ethy

0.07 0.589 0.42 0.96 0.553 < 1.00 0.969 0.98

VP - Vapor Pressure

- Indication of the ability of a substance to evaporate (liquid to gas or vapor)
- Evaporation rate increases with an increase in temperature
- The larger the value, the more volatile the substance
- The pressure exerted by a saturated vapor above its own liquid in a closed container

Vapor Pressure

- High vapor pressure => high inhalation hazard Normal atmospheric pressure: 760 mm Hg
- Examples of vapor pressures:
 - Water: 25 mm Hg slow evaporation
 - Acetone: 270 mm Hg fast evaporation
 - Sulfuric acid: 0.01 mm Hg almost no evaporation
 - Ammonia: 8.5 atm (atmospheres) exists as gas

$$BP = VP = volatility = flammability$$
$$BP = VP = volatility = flammability$$

Vapor Pressure Guidelines

Vapor Pressure	Hazard	Distance Vapors Travel
0-10 mmHg	Little concern	< 1 foot above liquid
> 100 mmHg	Inhalation concern	> 3-4 feet above liquid (breathing zone)

Chemical and Physical Properties

- FRZ Freezing Point
 - Temperature at which a liquid or gas begins to change to a solid
- MLT Melting Point

GAS

- Temperature at which a solid begins to change to a liquid
- **BP** Boiling Point
 - in ^OF at 1 atmosphere (760 mmHg)

Sublimation Freezing Condensation Melting

Boiling

Condensatio

LIC

Chemical and Physical Properties

- Flammability (below Sp.Gr. or RGasD)
 - Determined for most solids and gases
 - Liquids are classified following OSHA criteria (see page xiv)
- Fl. P Flash Point
 - The temperature at which the liquid phase gives off enough vapor to flash when exposed to an external ignition source

Flammable Range

LEL – Lower Explosive Limit

 The minimum concentration of a vapor in air that will produce a flash of fire when an ignition source is present

• UEL – Upper Explosive Limit

 The maximum concentration of a vapor in air that will produce a flash of fire when an ignition source is present

Flammable Range

- LEL Lower Explosive Limit
 - The minimum concentration of a vapor in air that will produce a flash of fire when an ignition source is present
- UEL Upper Explosive Limit
 - The maximum concentration of a vapor in air that will produce a flash of fire when an ignition source is present

Flammable Range

Concentration of vapor in air

Chemical	Flash Point	LEL	UEL
Gasoline	-45 oF	1.4%	7.6%
Methyl Alcohol	52 oF	6%	36%
Acetylene	NA	2%	100%

- State of Matter:
- Hazard Class:
- Vapor Pressure:
- Specific Gravity:
- Flash Point:
- LEL:
- UEL:
- Corrosively:

Modified Toyota Pick-up

METH LAB CHEMICAL HAZARD ASSESSMENT EXERCISE

Box 15: Incompatibilities Box 10: Measurement Method

• Box 15

 Lists important hazardous incompatibilities or reactivities of each substance

• **Box 10**

 Describes the suggested sampling and analysis method for the substance

Possible Incompatibility Reactions

Chemical Interactions / Reactivity

- Chemicals interacting to form new substances
- May be violent / explosive
- May require some energy input to start the reaction
- "Unstable" materials generally very reactive
- "Instability" refers to the substance being in an energetically unfavorable state
- "Inert" materials generally unreactive
- Water-reactives & air-reactives

Box 13: Personal Protection and Sanitation

- Summary of recommended practices for each substance
- Supplement general safe work practices (i.e. no eating, drinking or smoking)

Box 14: Respirator Selection

- Lists maximum use concentrations (MUC) for various types of respiratory protection
- Must use SCBA or Supplied Air at or above IDLH
- See Table 4 for codes

Boxes 16 & 17: Health Hazards

• Route

- Lists important routes of entry & if there is a skin/eye contact hazard
- Symptoms
 - Lists potential symptoms
- First Aid
 - List procedures for eye & skin contact, inhalation and ingestion
- Target Organs
 - Lists organs affected by exposure

Steps in the Production of

Meth

Nazi	Extraction	Cook	No pH Balance	Add Solvent	Salt-Out HCl bulbed thru meth oil
	Dissolve in Heat (methanol), Hydrocarbon, Or Solvents. Then Filter	Ephedrine + Lithium + ammonia = Meth Oil	Already a Base	Add solvent (coleman fuel or freon)	Salt + sulfuric Acid(liquid fire) = HCI gas[gas gen]
<u>HI/Red P</u>	Extraction	Cook	pH Balance	Add Solvent	Salt-Out HCl bulbed thru meth oil

eminatone

Photo by Vincent Laforet / The New York Times